

Suffolk’s Computer Science Progression Years 1 – 7

In this progression you will see repeated statements across the key stages. The Learning Outcomes (written as ‘I can’ statements and highlighted in purple) provide more detail and reflect the increasingly
complexity of the problems and range of languages children are expected to encounter.

As a Year 1 I can... As a Year 2 I can... As a Year 3 I can... As a Year 4 I can... As a Year 5 I can... As a Year 6 I can... As a Year 7 I can...

Objective #1: Understand what algorithms are; how they
are implemented as programs on digital devices; and
that programs execute by following precise and
unambiguous instructions.

Objective #1: design, write and debug programs that accomplish specific goals, including controlling or simulating
physical systems; solve problems by decomposing them into smaller parts.

Objective #2: Create and debug simple programs. Objective #2: use sequence, selection, and repetition in programs; work with variables and various forms of input
and output.

Objective #3: Use logical reasoning to predict the
behaviour of simple programs.

Objective #3: use logical reasoning to explain how some simple algorithms work and to detect and correct errors in
algorithms and programs.

Recognise that many
everyday devices
respond to instructions.

Recognise that a
computer carries out the
instructions contained in
a program.

I can name everyday
programmable devices and
say what they can do.

I can sort everyday
devices into programmable
and non-programmable.

I can tell my friend to do
something in the right
order and say that this is
an algorithm.

I can control a toy by
programming a sequence
of instructions and say that
this is an algorithm.

I can explain what an
algorithm is.

I can give an example of
an algorithm.

I understand that programs
are algorithms working on
computers.

Describe storyboards of
a programmable toy.

Draw my own
storyboards for a sprite.

Put the parts of a simple
process in order.

Recognise similarities
between storyboards of
processes.

Plan a task by drawing a
diagram of the process.

Plan a task by drawing a
standardised diagram of
the process.

Plan a task by drawing a
standardised diagram of
the process.

I can follow a given
sequence of instructions to
program a programmable
toy.

I can use predictions to
select the correct set of
instructions for a
programmable toy to
follow.

I can create a sequence of

I can create a set of
instructions for my sprite to
follow.

I can predict what will
happen when I run my
program.

I can physically carry out a
simple process (e.g., make
a sandwich).

I am able to visualise the
process and explain the
process orally (e.g., give
directions to someone else
to make a sandwich).

I understand the
importance of chronology.

I can analyse and identify
the similarities between
storyboards of processes
(link to repetition and
reusing and remixing).

I can identify the key parts
of the problem.

I can plan a task using my
own notation.

I can plan a task using my
standard notation.

I can decide on the best
programming language to
use.

I can solve a complex
problem by decomposing it
into smaller parts.

I can create a flowchart to
solve a problem.

I can follow a flowchart that
solves a problem.

I can explain the expected
outcomes of a flowchart.

instructions for a
programmable toy to
follow.

 Analyse algorithms and
select the most efficient
for given problem.

 I can demonstrate that
there might be more than
one algorithm to solve a
problem.

Create programs to make
people or programmable
toys do things.

Write a program to
control a virtual output.

Write a program to carry
out a simple task.

Write a program that
solves a problem by
using repetition.

Write a program that
solves a problem by
using selection.

Write a program that
solves a problem by
using variables.

Use two or more
programming languages.

I can give sequential
instructions to move
another child around
obstacles.

I can accurately follow
instructions from another
child.

I can give sequential
instructions to a
programmable toy to tell it
where I want it to go.

I can identify several ways
of moving my
programmable toy.

I can give sequential multi-
step instructions to a sprite
to tell it where I want it to
go.

I can identify several ways
of moving my sprite.

I understand the purpose
of a program relating to its
output (what is it going to
do)?

I understand the
chronology of a sequence.

I can explain orally the
sequence involving a
number of steps and
appropriate detail.

I can use computing
language (could be
standard English using
imperatives and adverbs or
specific formats within a
programming language).

I understand that there
might be more than one
algorithm to solve a
problem.

I understand that programs
can contain multiple
sequences that can be
performed in any order.

I can identify real-world
events that have an
element of repetition.

I understand why it is
necessary to repeat things.

I can locate elements of
the sequence that could
use repetition (e.g. square
on logo).

I understand that there
might be more than one
algorithm to solve a
problem.

I can identify the
conditionals that need to
be used.

I can identify real-world
events that use
conditionals.

I understand that there
might be more than one
algorithm to solve a
problem.

I can identify the variables
that need to be used.

I can identify real-world
events that use variables.

I understand that there
might be more than one
algorithm to solve a
problem.

I can create the solution to
a problem in a block-based
language.

I can relate the
computational concepts in
a text-based language to
those in a block-based
language.

 Understand how numbers
can be represented in
binary, and be able to
carry out simple
operations on binary
numbers.

 I can convert from 8-bit
binary to decimal.

I can count in binary.

I can add two binary
numbers together.

Debug my program. Debug my program. Debug my program. Debug my program. Debug my program. Debug my program. Debug my program.

I can test my instructions
for my programmable toy

I can test my instructions
for my sprite and fix

I am able to do things in
small steps and check my

I can identify what each
element of the sequence

I can identify what each
element of the sequence

I can choose from a range
of methods to

I am iterative and
incremental in my

and fix mistakes if I need
to, with adult support.

mistakes if I need to, with
adult support.

I can fix mistakes from a
given set of instructions
and test them.

I am able to do things in
small steps and check my
work as I go.

work as I go.

I can identify what the
problem is.

does.

I can identify what and
where the problem is.

I can analyse a program to
locate a problem.

I know how to fix my
program.

does.

I can identify what and
where the problem is.

I can analyse a sequence
of code to locate a
problem.

I know how to fix my code.

independently debug my
program.

I can explain the choices I
took to debug my program
and why.

I can interpret others’
programs and explain
where the problem occurs.

development of a program,
recognising the colour-
coding in the Integrated
Development Environment
(IDE) and solving errors in
code as I build my
program.

